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The first order approximate solutions of a set of non-liner differential equations, which is
established by using Kane’s method and governs the planar motion of beams under a large
linear motion of basement, are systematically derived via the method of multiple scales.
The non-linear dynamic behaviors of a simply supported beam subject to narrowband
random parametric excitation, in which either the principal parametric resonance of its first
mode or a combination parametric resonance of the additive type of its first two modes
with or without 3:1 internal resonance between the first two modes is taken into
consideration, are analyzed in detail. The largest Lyapunov exponent is numerically
obtained to determine the almost certain stability or instability of the trivial response of the
system and the validity of the stability is verified by direct numerical integration of the
equation of motion of the system.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Flexible structures undergoing a large linear motion and undertaking both constant and
random pulsating thrust are widely used in the fields of aviation engineering, military
engineering and so on. However, it is far from an easy task to gain an insight into the
dynamics of a flexible structure, even a slender beam, which is one of the simplest flexible
structures, owing to the complicated non-linear dynamics by nature. Recently, Feng and
Hu [1, 2] established a set of non-linear differential equations by using Kane’s method for
the planar oscillation of slender beams subject to a parametric excitation of the base
movement, with the cubic non-linearities of geometrical and inertia types taken into
consideration. In reference [2], the complicated non-linear dynamic behaviors of a slender
simply supported beam with principal parametric and 3:1 internal resonances were
systematically investigated and the corresponding parametrically excited dynamic stability
was analyzed in detail. As the parametric excitation, however, was restricted to be
deterministic, the significance of random parametric excitation, especially narrowband
random parametric excitation, has not been highlighted.

References to narrowband random excitation oscillators are few up to now. Rajan and
Davies [3] considered the random primary response of a Duffing oscillator subject to
narrowband excitation by using the method of multiple scales and stochastic averaging. At
the same time, Davies and Rajan [4] investigated the random superharmonic and
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subharmonic responses of the same oscillator stated above to narrowband excitation by
using the same two approaches. Nayfeh and Serhan [5] analyzed the stationary mean
and mean square responses and their local stability of a Duffing–Rayleigh oscillator
excited by the sum of a deterministic harmonic component and a random component
by using a second order closure method. Zhu et al. [6] numerically investigated the
stochastic jump and bifurcation of a Duffing oscillator under the external narrowband
excitation. Zhu [7] thought that the study of the random parametrically excited systems
was more important than that of random externally excited ones and was more
difficult in theory. Recently, Rong et al. [8, 9] studied the principal resonance of a
Duffing oscillator to combined deterministic and narrowband parametric excitations via
the method of multiple scales. The non-linear dynamic behaviors such as stability and
bifurcation of the steady response were systematically investigated in their studies.
However, related research objects are mainly concentrated on some classical modes
such as Duffing oscillator, and objects with engineering significance have been rarely
dealt with so far.

The aim of this paper is to reveal the non-linear dynamics of slender beams subject to
both a large linear motion and a small narrowband random excitation of basement. In
what follows, the random component is taken to be harmonic having a random amplitude
and phase. The paper is organized as follows. The non-linear dynamic equations of planar
motion are derived for the slender beams via Kane’s method in section 2. In section 3, the
method of multiple scales is used to determine the modulation of amplitude and phase of a
simply supported beam. In section 4, some non-linear dynamic behaviors of the system
without any internal resonances are discussed. The largest Lyapunov exponent of the
trivial response and its corresponding stability of the system to either the narrowband
random principal parametric resonance of the first mode or the combination random
parametric resonance of the first two modes are studied by means of qualitative analyses.
Also, in section 5, the largest Lyapunov exponent of the trivial response and its stability of
the system to the combination of principal narrowband random parametric resonance of
the first mode and the 3:1 internal resonance of the first two modes are systematically
analyzed. Finally, some conclusions are drawn in section 6.

2. EQUATIONS OF MOTION

As shown in Figure 1, a slender uniform beam B is simply supported on a rigid
basement A; which is moving along in r0 with respect to the Newtonian reference frame N

fixed on the ground. The beam is characterized by the natural length l; the area of cross-
section A0; the second moment of area of cross-section I ; the mass per unit length r; and
Young’s modulus E:

To describe the motion of the beam, two unit vectors a1 and a2 are defined in Figure 1,
where a1 is parallel to the centroidal axis of the underformed beam, while a2 is parallel to
the central principal axis of the cross-section of the beam. Both are fixed in the relative
reference frame R1 built into the basement A:

The kinetic description of the beam can be made through an arbitrary, infinitely short
element of the beam, which has a distance x away from point O: For the slender beam, the
motion of such an element can be fully determined by the point Cv at the centroidal axis of
the beam. When the beam is deformed due to the motion of the basement and any other
disturbance, the point Cv moves to point C; positioned by a vector u to describe the
relatively elastic deformation of Cv:



Figure 1. Configuration of a simply supported beam in a large linear motion.
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Following references [1, 2] and neglecting the rotary inertia, transverse shear and torsion
of slender beams, one can derive the following geometric relation:

x þ s ¼
Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u1;bÞ2 þ ðu2;bÞ2

q
db; ð1Þ

where u1;b and u2;b are the partial derivatives of u1 and u2 with respect to the dummy
variable b; i.e., the distance from point Cv to point O: In what follows, the deformation of
the beam is assumed to be not very large. By means of the truncated Taylor expansion
under this assumption, equation (1) can be approximated as

u1 ¼ s � 1

2

Z x

0

ðu2;bÞ2 db: ð2Þ

To simplify the partial differential equations of the beam into a set of ordinary
differential equations, the Rayleigh–Ritz method is used to approximate the variables s

and u2 as follows:

sðx; tÞ ¼
Xn1
i¼1

F1iðxÞqiðtÞ; u2ðx; tÞ ¼
Xn2
i¼1

F2iðxÞQiðtÞ; ð3Þ

where F1i and F2i are the stretching and bending modal shapes of the beam when the
basement is not moving, qi and Qi are the corresponding modal co-ordinates, and n1 and
n2 are the numbers of modal co-ordinates used in the analysis.

According to references [1, 2], the axial load P and the moment of bending M of the
beam can be simplified as follows:

P ¼ EA0sx; M ¼ EIu2;xxð1þ u2
2;xÞ

�3=2: ð4; 5Þ

In general, the strain energy of beam U can be given by

U ¼
Z l

0

P2

2EA0
dx þ

Z l

0

M2

2EI
dx:

ð6Þ

Kane’s method implies that the generalized inertial force of an infinitely short element of
the beam should be balanced by the generalized active force on the same element of the
beam, that is Z l

0

r aC
N � @v

C
N

@ ’yyk

� �
dx þ @U

@ ’yyk

¼ 0; ð7Þ

where yk is either qk or Qk; v
C
N and aC

N are the inertial velocity and acceleration of the
center C respectively.

Using the orthogonality property between modal shapes F1i and F1j and the
orthogonality property between modal shapes F2i and F2j for the undamped beam, one
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can finally obtain

M1k .qqk þ K1kqk �
Xn2
i¼1

Xn2
j¼1

ð2Dk
1ij þ Ek

1ijÞQiQj �
Xn2
i¼1

Xn2
j¼1

Ck
1ijð ’QQi

’QQj þ Qi
.QQjÞ

¼ �a1k ’vv0 cos a; k ¼ 1; 2; . . . ; n1; ð8Þ

M2k
.QQk þ K2kQk �

Xn2
i¼1

ðak
2i ’vv0 cos aÞQi �

Xn1
i¼1

Xn2
j¼1

Ck
2ij .qqiQj �

Xn1
i¼1

Xn2
j¼1

ð4Ek1
2ij þ Ek2

2ij þ Ek3
2ijÞqiQj

þ
Xn2
h¼1

Xn2
i¼1

Xn2
j¼1

Dk
2hijðQhQi

.QQj þ Qh
’QQi

_QQjÞ þ
Xn2
h¼1

Xn2
i¼1

Xn2
j¼1

ðFk
2ijh þ Gk

2ijhÞQhQiQj

¼ �b2k ’vv0 sin a; k ¼ 1; 2; . . . ; n2; ð9Þ

where

M1k ¼
Z l

0

rF1kF1k dx; K1k ¼
Z l

0

EA0F1k;xF1k;x dx; Ck
1ij ¼

Z l

0

fijF1k dx;

a1k ¼
Z l

0

rF1k dx;

Dk
1ij ¼

Z l

0

EIF2i;xxF2j;xxF1k;x dx; Ek
1ij ¼

Z l

0

EIF2i;xxF2j;xF1k;xx dx; ak
2i ¼

Z l

0

rfik dx;

M2k ¼
Z l

0

rF2kF2k dx; K2k ¼
Z l

0

EIF2k;xxF2k;xx dx; Ck
2ij ¼

Z l

0

rF1ifij dx;

Dk
2hij ¼

Z l

0

rfijfhk dx; Ek1
2ij ¼

Z l

0

EIF2j;xxF2k;xxF1i;x dx; Ek2
2ij ¼

Z l

0

EIF1j;xxF2i;xF2k;xx dx;

Ek3
2ij ¼

Z l

0

EIF1j;xxF2i;xxF2k;x dx; Fk
2ijh ¼

Z l

0

EIF2i;xxF2k;xxF2j;xF2h;x dx; b2k ¼
Z l

0

rF2k dx

Gk
2ijh ¼

Z l

0

EIF2i;xxF2j;xxF2h;xF2k;x dx; fij ¼
Z x

0

F2i;bðbÞF2j;bðbÞ db

3. FIRST ORDER APPROXIMATE SOLUTION

In what follows, the cases of a simply supported slender beam and a ¼ 0 are taken into
consideration. Assume that the base acceleration is not very large and the stretch of the arc
length of the beam is so small that the beam can be treated as an inextensional one. To
arrive at general results and conclusions, a few dimensionless variables are introduced as
the following:

Z ¼ x

l
; t ¼ p2t

T
; Wk ¼ Qk

ll
; ð10Þ

where T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rl4=EI

p
and %ll represents a scaling factor.

In what follows, the motion of the basement is assumed to be

’vv0 ¼ a0 þ xðtÞ; ð11Þ

where a0 is the average acceleration and xðtÞ a narrowband random process which has the
same form as that described in references [3–5, 8–10] and is given by

xðtÞ ¼ f cosoct þ g sinoct; ð12Þ
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where oc is the center frequency of xðtÞ; and f and g are slowly varying stationary random
processes with zero means. Here xðtÞ is chosen to be a zero-mean Gaussian narrowband
random excitation. It could be obtained by filtering a white noise through a linear filter
[3–5, 10], that is

.xxþ o2
cxþ g’xx ¼ g1=2ocW ; ð13Þ

where g stands for the bandwidth of the filter. The autocorrelation function of the white
noise W is given by

RW ðtÞ ¼ 2pS0dðtÞ; ð14Þ

where S0 is the spectrum constant of W and d the Dirac delta function. The spectrum of x
is given by

go2
cS0

ðo2
c � o2Þ2 þ g2o2

! pS0dðocÞ; g ! 0: ð15Þ

Substituting equation (12) into equation (13) and performing deterministic and stochastic
averaging of the equations describing the modulations of f and g; one obtains

’ff ¼ ðg=2Þ1=2Wc � ðg=2Þf ; ’gg ¼ ðg=2Þ1=2Ws � ðg=2Þg: ð16Þ

The white noise components Wc and Ws are independent and their autocorrelation
functions are given by equation (14) and have the following forms:

Rf ðtÞ ¼ RgðtÞ ¼ pS0e
�gjtj=2: ð17Þ

The correlation time of f and g is Oð1=gÞ: This means that for sufficiently small
bandwidth, f and g are slowly varying functions of time.

Substituting equations (10)–(12) into equation (9) yields

.WWk þ ð *oo2
k � ak

2kÞWk �
Xn2
i¼1
i=k

ak
2iWi � e

Xn2
i¼1

ð f k
2i cosotþ gk

2i sinotÞWi þ e
Xn2
i¼1

Xn2
j¼1

Xn2
h¼1

ak
ijhWiWjWh

þ e
Xn2
i¼1

Xn2
j¼1

Xn2
h¼1

bk
ijhWið ’WWj

’WWh þ Wj
.WWhÞ ¼ 0; k ¼ 1; 2; . . . ; n2; ð18Þ

where

*ook
2= *K2k/ *M2k, o ¼ ocT=p2; ak

2i ¼ a0T2 *ak
2i=lp4 *M2k; f k

2i ¼ fT2 *ak
2i=elp

4 *M2k;

gk
2i ¼ gT2 *ak

2i=elp
4 *M2k; ak

ijh ¼ *aak
ijh=e *M2k; bk

ijh ¼ *bb
k

ijh=e *M2k; *C2k ¼ C2kT=p2rl;

*K2k ¼ ð1=p4Þ
R 1
0 F2

2k;ZZ dZ; *bb
k

ijh ¼ l̄
2 R 1

0 fijfhk dZ; fij ¼
R Z
0 F2i;bF2j;b db; *M2k ¼

R 1
0 F

2
2k dZ;

*ak
2i ¼

R 1
0 fik dZ; *aak

ijh ¼ ð%ll2=p4Þ
R 1
0 F2i;ZZF2j;ZðF2h;ZZF2k;Z þ F2h;ZF2k;ZZÞ dZ; 05e51:

Decoupling equation (18) through the use of linear transformation W ¼ Fy; where W ¼
fW1W2 � � � Wn2g

T; y ¼ fy1y2 � � � yn2g
T; and F ¼ fj1j � � �jn2

g is the normalized mode matrix
of linearized equation (18), and introducing the viscous modal damping to characterize the
energy dissipation, one has

.yyk þ 2e#BBk ’yyk þ o2
kyk � e

Xn2

i¼1
ð #ff

k

2i cosotþ #ggk
2i sinotÞyi þ e

Xn2

i¼1

Xn2

j¼1

Xn2

h¼1
#aak

ijhyiyjyh

þ e
Xn2

i¼1

Xn2

j¼1

Xn2

h¼1
#bb

k

ijhð ’yyj ’yyh þ yj .yyhÞ ¼ 0; k ¼ 1; 2; . . . ; n2; ð19Þ
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where #ff
k

2i ¼
Pn2

p¼1

Pn2
h¼1 jpkf

p
2hjhi; #ggk

2i ¼
Pn2

p¼1

Pn2
h¼1 jpkg

p
2hjhi; #aak

ijh ¼
Pn2

p¼1

Pn2
l¼1

Pn2
m¼1Pn2

n¼1 jpka
p
lmnjlijmijnh; and

#bb
k

ijh ¼
Pn2

p¼1

Pn2
l¼1

Pn2
m¼1

Pn2
n¼1 jpkb

p
lmnjlijmjjnh:

The first two sets of coefficients stated above give the amplitudes of narrowband
random parametric excitation and the last two sets the non-linear interaction coefficients
between the modal co-ordinates.

The method of multiple scales has been widely used in the analysis of deterministic
systems. However, Rajan and Davies [3], Davies and Rajan [4], Nayfeh and Serhan [5],
and Rong et al. [8, 9] extend this method to the analysis of non-linear systems subject to
random external or parametric excitations. Here, now, this method is also used to derive
the first order approximate solutions of equation (19) as the following:

ykðt; eÞ ¼ yk0ðT0;T1Þ þ eyk1ðT0;T1Þ; ð20Þ

where T0 ¼ t; T1 ¼ et; and k ¼ 1; 2; . . . ; n2: Substituting the solution candidates into
equation (19) and equation the coefficients of some powers of e; one obtains

D2
0yk0 þ o2

kyk0 ¼ 0; k ¼ 1; 2; . . . ; n2; ð21aÞ

D2
0yk1 þ o2

kyk1 ¼ �2#BBkD0yk0 � 2D0D1yk0 þ
Xn2

i¼1
ð #ff

k

2i cosotþ #ggk
2i sinotÞyi0

�
Xn2

i¼1

Xn2

j¼1

Xn2

h¼1
#aak

ijhyi0yj0yh0 �
Xn2

i¼1

Xn2

j¼1

Xn2

h¼1
#bb

k

ijhyi0ðD0yj0D0yh0 þ yj0D
2
0y0Þ;

k ¼ 1; 2; . . . ; n2; ð21bÞ

where D0 ¼ @=@T0 and D1 ¼ @=@T1 are the partial differential operators.
The solution of linear partial differential equation (21a) can be written in the complex

form

yk0 ¼ AkðT1Þ expðiokT0Þ þ c:c:; k ¼ 1; 2; . . . ; n2; ð22Þ

where c.c. stands for the complex conjugate of the preceding terms. Substituting equation
(22) into equation (21b) yields

D2
0yk1 þ o2

kyk1 ¼ � 2iokð#BBkAk þ A0
kÞ expðiokT0Þ

þ 1

2

Xn2

m¼1
ð #ff

k

2m � igk
2mÞ fAm exp½iðoþ omÞt
 þ %AAm exp½iðo� omÞt
g

þ
Xn2

m¼1

Xn2

j¼1

Xn2

h¼1
fð�#aak

mjh þ ojoh
#bb

k

mjh þ o2
h
#bb

k

mjhÞ

AmAjAh exp½iðom þ oj þ ohÞt


þ ð�#aak
mjh � ojoh

#bb
k

mjh þ o2
h
#bb

k

mjhÞAm
%AAjAh exp½iðom � oj þ ohÞt


þ ð�#aak
mjh þ ojoh

#bb
k

mjh þ o2
h
#bb

k

mjhÞ %AAmAjAh exp½ið�om þ oj þ ohÞt


þ ð�#aak
mjh � ojoh

#bb
k

mjh þ o2
h
#bb

k

mjhÞ %AAm
%AAjAh exp½ið�om � oj þ ohÞt
g

þ c:c:; k ¼ 1; 2; . . . ; n2; ð23Þ

where the overbar stands for the complex conjugate.
A particular solution of equation (23) may contain some secular terms and small-divisor

terms because of the presence of principal parametrical resonance or combination
parametric resonance or internal resonance between the natural modes. In what follows,
only two natural modes are taken into consideration to investigate the behaviors of
random parametric resonances.
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4. RANDOM PRINCIPAL AND COMBINATION PARAMETRIC RESONANCES
WITHOUT ANY INTERNAL RESONANCES

Assume that there exist no internal resonances between any two natural modes. In order
to investigate the random combination parametric resonance between the mth and the nth
natural modes, the frequency detuning parameter s1 is introduced as given below:

o ¼ om þ on þ es1; m; n ¼ 1; 2; . . . ; n2: ð24Þ

Substituting this equation into equation (23) and eliminating the terms that produce
secular terms in yk1; one obtains

2iomð#BBmAm þ A0
mÞ � 1

2
ð #ff m

2n � i #ggm
2nÞ %AAn expðis1T1Þ þ

Xn2

j¼1
cmjAj

%AAjAm ¼ 0;

2ionð#BBnAn þ A0
nÞ � 1

2
ð #ff n

2m � i #ggn
2mÞ %AAm expðis1T1Þ þ

Xn2

j¼1
cnjAj

%AAjAn ¼ 0;

2iokð#BBkAk þ A0
kÞ þ

Xn2

j¼1
ckjAj

%AAjAk ¼ 0; k=m; n; ð25Þ

where

ckj ¼
3#aak

kkk � 2o2
k
#bb

k

kkk; j ¼ k;

2ð#aak
kjj þ #aak

jjk þ #aak
jkj � o2

j
#bb

k

jkj � o2
k
#bb

k

jjkÞ; j=k:

8<
:

As the modes for k=m; n are neither directly excited by the external excitation, nor
indirectly excited by the internal resonance, only the mth and the nth natural modes
contribute to the steady state response due to the presence of viscous damping. Finally,
one has

2iomð#BBmAm þ A0
mÞ � 1

2
ð #ff m

2n � i #ggm
2nÞ %AAn expðis1T1Þ þ cmnAn

%AAnAm þ cmmA2
m
%AAm ¼ 0;

2ionð#BBnAn þ A0
nÞ � 1

2
ð #ff n

2m � i #ggn
2mÞ %AAm expðis1T1Þ þ cnnA2

n
%AAn þ cnmAm

%AAmAn ¼ 0: ð26Þ

Similarly, to describe the closeness of the beam to the random principal parametric
resonance of the mth natural mode, the frequency detuning parameter s1 is also
introduced as given below:

o ¼ 2om þ es1; m ¼ 1; 2; . . . ; n2: ð27Þ

Substituting the above equation into equation (23) and eliminating the terms that produce
secular terms in yk1; one finally has

2iomð#BBmAm þ A0
mÞ � 1

2
ð #ff

m

2m � i #ggm
2mÞ %AAm expðis1T1Þ þ cmmA2

m
%AAm ¼ 0: ð28Þ

In what follows, without loss of generality, only the first two natural modes are involved
to investigate the random parametric resonances.

4.1. RANDOM PRINCIPAL PARAMETRIC RESONANCE OF THE FIRST NATURAL MODE

4.1.1. Modulation equations and the largest Lyapunov exponent

Following equation (28), the condition of random principal parametric resonance of the
first natural mode holds true when m ¼ 1; that is o ¼ 2o1 þ es1: Consequently,
one has

io1ð#BB1A1 þ A0
1Þ � 1

4
ð #ff

1

21 � i #gg1
21Þ %AA1 expðis1T1Þ þ 1

2
c11A2

1
%AA1 ¼ 0: ð29Þ
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Substituting the Cartersian transformation

A1ðT1Þ ¼ 1
2
½U1ðT1Þ � iV1ðT1Þ
 eil1 ; l1 ¼

s1
2

T1 ð30Þ

into equation (29) and separating the results into real and imaginary parts, one arrives at a
set of ordinary differential equations, namely, the modulation equations of steady state
response

U 0
1 ¼ �#BB1 �

#gg1
21

4o1

� �
U1 þ �s1

2
þ

#ff
1

21

4o1

 !
V1 þ

1

8o1
c11ðU2

1 þ V 2
1 Þ V1;

V 0
1 ¼

s1
2
þ

#ff
1

21

4o1

 !
U1 þ �#BB1 þ

#gg1
21

4o1

� �
V1 �

1

8o1
c11ðU2

1 þ V 2
1 ÞU1:

ð31Þ

In what follows, the analysis is mainly focused on the stability of the trivial response of
equation (31). To obtain the necessary and sufficient almost certain stability condition of
equation (31), according to reference [9], one has the linearized part of the equation in the
neighborhood of (0, 0):

U 0
1 ¼ �#BB1 �

#gg1
21

4o1

� �
U1 þ �s1

2
þ

#ff
1

21

4o1

 !
V1;

V 0
1 ¼

s1
2
þ

#ff
1

21

4o1

 !
U1 þ �#BB1 þ

#gg1
21

4o1

� �
V1: ð32Þ

For ergodic random processes f and g; according to Oseledec multiplicative ergodic
theory, it can be concluded that for any initial value (U10;V10), the Lyapunov exponent of
the phase portraits (U1ðT1;U10;V10Þ; V1ðT1;U10;V10Þ) in equation (32) can be described as

lðU10;V10Þ ¼ limT1!1
1

T1
ln½ðU1ðT1;U10;V10ÞÞ2 þ ðV1ðT1;U10;V10ÞÞ2
1=2: ð33Þ

From equation (33), one can obtain two different Lyapunov exponents. Thus, the
almost stability of the trivial response of equation (31) can be determined by the largest
Lyapunov exponent l ¼ lmax; i.e., when l50; the trivial solution is almost certainly stable
and is unstable when l > 0:

Alternatively, by using the following polar co-ordinate transformation

U1 ¼ r cos
Z
2
; V1 ¼ r sin

Z
2
; ð34Þ

one can transform equation (32) to

r0 ¼ �#BB1r þ r

4o1
ð #ff

1

21 sin Z� #gg1
21 cos ZÞ;

Z0 ¼ s1 þ
1

2o1
ð #ff

1

21 cos Zþ #gg1
21 sin ZÞ: ð35Þ

By letting r ¼ ln r and substituting it into equation (35), one obtains

r0 ¼ �#BB1 þ
r

4o1
ð #ff

1

21 sin Z� #gg1
21 cos ZÞ;

Z0 ¼ s1 þ
1

2o1
ð #ff

1

21 cos Zþ #gg1
21 sin ZÞ: ð36Þ
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Finally, one can evaluate the largest Lyapunov exponent by using another calculating
form, that is

l ¼ �#BB1 þ
1

4o1
limT1!1

1

T

Z T

0

½ f 1
21ðT1Þ sin ZðT1Þ � #gg1

21ðT1Þ cos ZðT1Þ
 dT1: ð37Þ

Obviously, equation (37) shows that the largest Lyapunov exponent is inversely
proportional to the modal damping coefficient #BB1; i.e., the higher is the value of #BB1; the
smaller is the value of l:

4.1.2. Numerical simulation of the largest Lyapunov exponent

To understand the non-linear dynamics of slender beams subject to the combination of
a large deterministic linear motion and a small narrowband random excitation, a few case
studies at different basement movements will be given in this and the following sections.
For this purpose, the dimensionless average acceleration a ¼ �a0T

2=ðp4lÞ and the
dimensionless narrow band random process x1 ¼ xT2=ðp4lÞ are introduced and the
corresponding dimensionless slowly varying stationary random processes become f1 ¼
fT2=p4l and g1 ¼ gT2=p4l; respectively, while the parameters e and %ll are fixed to 0�1 and
0�01 respectively. In Figure 2, the first order natural frequency, the second order natural
frequency and the tripled first order natural frequency are shown as the functions in a:
This figure enables one to perfectly tune a 3:1 internal resonance of the beam when
a ¼ 0�3160:

Following references [3, 4, 8–10], for numerical simulation it is more convenient to use a
pseudo-random signal given by

x1ðtÞ ¼

ffiffiffiffiffiffiffi
2s2x
N

s XN

k¼1
cosðokt þ jkÞ: ð38Þ

The frequencies ok are chosen independently from a random population with probability
density function of the same form as the spectrum of x1; and the random phases jk

are independent and uniformly distributed in (0; 2p). Shinozuka [11] has verified that
x1ðtÞ tends to a Gaussian process as N ! 1: For the very narrowband simulations used
here, the spectrum chosen is a simple top-hat type, and the random frequencies are
distributed uniformly in (o� g=2;oþ g=2). According to reference [9], f1 and g1; can be
Figure 2. Variation of the first order natural frequency o1; the second order natural frequency o2 and the
tripled first order natural frequency 3o1; with the dimensionless average acceleration a:
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written as

f1ðT1Þ ¼

ffiffiffiffiffiffiffi
2s2x
N

s XN

k¼1
cos

g
e
OkT1 þ jk

� �
;

g1ðT1Þ ¼

ffiffiffiffiffiffiffi
2s2x
N

s XN

k¼1
sin

g
e
OkT1 þ jk

� �
; ð39Þ

where Ok are independent and uniformly distributed in (�0�5, 0�5) and N is chosen
as 500.

In the numerical simulation of this and the next section, a is fixed at 0�0912 and the
corresponding parameters become o1 ¼ 1�2000; o2 ¼ 4�2179; #ff

1

21 ¼ 49�34f1; and #gg1
21 ¼

49�34g1 respectively. The time history of f1 is shown in Figure 3. The variation of the
largest Lyapunov exponent l determined by equation (37) is shown in Figure 4(a) as
l� ðs1; s2xÞ surface for the case of g ¼ 0�01 and #BB1 ¼ 0�1: The corresponding isohypse
curves of l; which indirectly indicate the different almost certain stability boundaries of
the trivial response for different damping parameters, are also shown in Figure 4(b). In
other words, according to equation (37), for instance, the almost certain stability
boundary is the isohypse curve of l ¼ 0�1 when #BB1 ¼ 0�2; the isohypse curve of l ¼ 0�2
when #BB ¼ 0�3 and so on. When the value on the l� ðs1; s2xÞ surface is greater than zero, the
corresponding trivial response is unstable; on the contrary, the response is stable. With the
increase of g from a small value, the stability of the trivial response of the system will
change more or less. Figures 5(a) and 5(b) correspond to Figures 4(a) and 4(b)
respectively. All parameters except the bandwidth of the narrow-band random excitation
are kept the same: g is increased from 0�01 to 0�1. It can be seen in Figure 5(a) that the
mesh surface becomes flatter than that in Figure 4(a), which implies that the unstable areas
will become narrower with the increase of g and the isohypse curves in Figures 5(b) mainly
verify the validity of this conclusion.

Without loss of generality, in order to verify the validity of the stability of the trivial
response as well as the effectiveness of the damping described by equation (37), direct
numerical integration of the linear parts of equation (19) has been made under three
exciting conditions for its first mode when g ¼ 0�01; i.e., (s2x; s1) is taken to be (0�0002, 0),
(0�0004, 0), or (0�0008, 0) respectively. Since the higher modes (k52) are neither directly
Figure 3. Time history of f1 with s2x ¼ 1: (a) g ¼ 0�01; (b) g ¼ 0�1:



Figure 4. Largest Lyapunov exponent l of the trivial response of the system to principal parametric resonance
of its first mode: g ¼ 0�01; #BB1 ¼ 0�1: (a) Mesh surface of l� ðs1;s2xÞ; (b) isohypse curves of l:

Figure 5. Largest Lyapunov exponent l of the trivial response of the system to principal parametric resonance
of its first mode: g ¼ 0�1; #BB1 ¼ 0�1: (a) Mesh surface of l� ðs1; s2xÞ; (b) isohypse curves of l:
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excited by parametric excitation nor indirectly excited by internal excitation, from the
linear parts of equation (19) it can be shown that the response amplitude of these modes
die out due to the presence of damping, and the response of the first mode can be solved
independently. According to Figure 4(b), one can find that the exciting position of
ðs2x; s1Þ ¼ ð0�0002; 0Þ in the s2x2s1 plane is between the isohypse curve l ¼ 0 and the
isohypse curve l ¼ 0�1; position of ðs2x; s1Þ ¼ ð0�0004; 0Þ between l ¼ 0�1 and 0�2, and
position of ðs2x; s1Þ ¼ ð0�0008; 0Þ between l ¼ 0�2 and 0�3 respectively.

Figures 6(a)–(f) show the corresponding numerical integration results for the three
exciting conditions stated above with different dumping parameters, where the initial
integrating condition is chosen to be ðy10; ’yy10Þ ¼ ð0; 10Þ: According to Figure 4(b),
conditions in Figures 6(a), 6(c), and 6(e) will make the trivial response unstable and
conditions in Figures 6(b), 6(d), and 6(f) will make it stable. Finally, one can find that the
results in Figure 4(b) are in full agreement with that in Figure 6.



Figure 6. Numerical integration results for different exciting conditions: (a) ðs2x; s1Þ ¼ ð0�0002; 0Þ; #BB1 ¼ 0�1;
(b) ðs2x; s1Þ ¼ ð0�0002; 0Þ; #BB1 ¼ 0�2; (c) ðs2x;s1Þ ¼ ð0�0004; 0Þ; #BB1 ¼ 0�2; (d) ðs2x; s1Þ ¼ ð0�0004; 0Þ; #BB1 ¼ 0�3;
(e) ðs2x;s1Þ ¼ ð0�0008; 0Þ; #BB1 ¼ 0�3; (f) ðs2x;s1Þ ¼ ð0�0008; 0Þ; #BB1 ¼ 0�4:
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4.2. COMBINATION RESONANCE OF THE FIRST TWO NATURAL MODES

4.2.1. Modulation equations and the largest Lyapunov exponent

Following equation (25), the condition of combination resonance between the first two
natural modes holds true when m ¼ 1 and n ¼ 2; i.e., o ¼ o1 þ o2 þ es1: Consequently,
one obtains

2io1ð#BB1A1 þ A0
1Þ � 1

2
ð #ff 1

22 � i #gg1
22Þ %AA2 expðis1T1Þ þ c12A2

%AA2A1 þ c11A2
1
%AA1 ¼ 0;

2io2ð#BB2A2 þ A0
2Þ � 1

2
ð #ff 2

22 � i #gg2
22Þ %AA1 expðis1T1Þ þ c22A2

2
%AA2 þ c21A1

%AA1A2 ¼ 0: ð40Þ

Similarly, substituting the Cartesian transformation

AkðT1Þ ¼ 1
2
½UkðT1Þ � iVkðT1Þ
 eil1 ; l1 ¼

s1
2

T1; k ¼ 1; 2 ð41Þ
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into equation (40) and separating the results into real and imaginary parts, one arrives at a
set of ordinary differential equations, namely, the modulation equations of steady state
response:

U 0
1 ¼ �#BB1U1 � 1

2
s1V1 �

#gg1
22

4o1
U2 þ

#ff
1

22

4o1
V2 þ

V1

8o1

X2

k¼1
c1kðU2

k þ V2
k Þ;

V 0
1 ¼ 1

2
s1U1 � #BB2V1 þ

#ff
1

22

4o1
U2 þ

#gg1
22

4o1
V2 �

U1

8o1

X2

k¼1
c1kðU2

k þ V2
k Þ;

U 0
2 ¼ � #gg2

21

4o2
U1 þ

#ff
2

21

4o2
V1 � #BB2U2 � 1

2
s1V2 þ

V2

8o2

X2

k¼1
c2kðU2

k þ V2
k Þ;

V 0
2 ¼

#ff
2

21

4o2
U1 þ

#gg2
21

4o1
V1 þ 1

2
s1U2 � #BB2V2 �

U2

8o2

X2

k¼1
c2kðU2

k þ V2
k Þ: ð42Þ

Substituting the following polar co-ordinate transformation [12]

U1 ¼ r cos x cos z; V1 ¼ �r sin x cos z; U2 ¼ r cos y sin z; V2 ¼ �r sin y sin z ð43Þ

into the linear parts of equation (42), one can obtain a set of equations similar to equation
(36) (see Appendix A), where r stands for the amplitude of the response of the system, x

and y are the polar angles of the two sub-systems, respectively, and z is the coupling angle
between the two sub-systems. However, it will result in failure for one to numerically
simulate the largest Lyapunov exponent of the trivial response of the system owing to z

crossing np=2 (n ¼ 0;�1;�2; . . .). In what follows, therefore, one method for calculating
the largest Lyapunov exponent of the trivial response of equation (42) is adopted [13],
namely,

l � 1

KT

XK

k¼1
lnk *wðkTÞk; ð44Þ

where T is generally chosen to be 10-fold the longest period of the linear system in
question, K a larger number to ensure the stability of the numerically simulating results,
*wðkTÞ the solution vector at t ¼ kT ; which is calculated with an initial condition of
normalized *wðkT � TÞ and within an integrating period of ½ðk � 1ÞT ; kT 
; and k *wðkTÞk
the modulus *wðkTÞ:

In order to justify equation (44), the largest Lyapunov exponent l and the
corresponding isohypse curves of l; which are determined by equation (44), are shown
in Figures 7(a) and 7(b) with the same conditions as that in Figure 4, where T ¼ 90 and
K ¼ 30: Comparison has been made between Figures 4 and 7 and the results show that
they are almost the same.

4.2.2. Numerical simulation of the largest Lyapunov exponent

In the following simulation of the largest Lyapunov exponent of the trivial response,
since a is fixed at 0�0912, all other parameters are kept the same as that in the last section
but #ff

1

22 ¼ #ff
2

21 ¼ 44�46f1 and #gg1
22 ¼ #gg2

21 ¼ 44�46g1 should be added owing to the need of
combination resonance analysis. After investigating and calculating the trivial response of
equation (42), the parameters in equation (44) are finally chosen as follows: T ¼ 100;
K ¼ 30: The variation of the largest Lyapunov exponent l determined by equation (44)
with s2x and s1 is shown in Figure 8(a) as l� ðs1; s2xÞ surface for the case of g ¼ 0�1 and
#BB1 ¼ #BB2 ¼ 0�1: The corresponding isohypse curves of l are shown in Figure 8(b).



Figure 7. Largest Lyapunov exponent l of the trivial response of the system to principal parametric resonance
of its first mode calculated by equation (44): g ¼ 0�01; #BB1 ¼ 0�1: (a) Mesh surface of l� ðs1; s2xÞ; (b) isohypse
curves of l:

Figure 8. Largest Lyapunov exponent l of the trivial response of the system to combination parametric
resonance of its first two natural modes: g ¼ 0�1; #BB1 ¼ #BB2 ¼ 0�1: (a) Mesh surface of l� ðs1;s2xÞ; (b) isohypse
curves of l:
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Figures 8(a) and 8(b) correspond to Figures 5(a) and 5(b), respectively, and they have a
similar contour, but the former will receive a stronger excitation than the latter for the
same unstable area. In other words, the unstable area under the condition of combination
parametric resonance of the first two natural modes will be narrower than that of the
principal parametric resonance of the first mode if all parameters are kept the same.

5. RANDOM PARAMETRIC EXCITATION COMBINED WITH 3:1 INTERNAL
RESONANCE BETWEEN THE FIRST TWO NATURAL MODES

As stated above, when a comes close to 0�3160, the condition of 3:1 internal resonance
between the first two natural modes will hold true which results in that the two modes will
be excited together no matter which is parametrically excited. Without loss of generality,
in what follows, the principal parametric resonance of the first natural mode is
investigated.
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5.1. MODULATION EQUATIONS AND THE LARGEST LYAPUNOV EXPONENT

To describe the closeness of the beam to these two types of resonances, two detuning
parameters are introduced as given below:

o ¼ 2o1 þ es1; o2 ¼ 3o1 þ es2: ð45Þ

Substituting these into equation (21b) yields

2io1 ð#BB1A1 þ A0
1Þ � 1

2
½ð #ff

1

21 � i #gg1
21Þ %AA1 expðis1T1Þ þ ð #ff

1

22 � i #gg1
22Þ
 A2 expfiðs2 � s1ÞT1g


þ
Xn2

j¼1
c1jAj

%AAjA1 þ d12A2
%AA
2

1 expðis2T1Þ ¼ 0;

2io2 ð#BB2A2 þ A0
2Þ � 1

2
ð #ff

2

21 � i #gg2
21Þ A1 expfiðs1 � s2ÞT1g þ

Xn2

j¼1
c2jAj

%AAjA2

þ d21A3
1 expð�is2T1Þ ¼ 0; ð46Þ

where d12 ¼ #aa1121 þ #aa1211 þ #aa1112 � 2o2
1
#bb
1

211 þ o1o2ð #bb
1

121 þ #bb
1

112Þ � ðo2
1
#bb
1

121 þ o2
2
#bb
1

112Þ and

d21 ¼ #aa2111 � 2o2
1
#bb
2

111:

Similar to equation (40), substituting the Cartesian transformation

AkðT1Þ ¼ 1
2
½UkðT1Þ � iVkðT1Þ
 eilk ; k ¼ 1; 2 l1 ¼

s1
2

T1; l2 ¼ 3
2
s1 � s2

� �
T1 ð47Þ

into equation (46) and separating the results into real and imaginary parts, one finally has

U 0 ¼ � #BB1 þ
#gg1
21

4o1

� �
U1 �

1

2
s1 �

#ff
1

21

2o1

 !
V1 �

#gg1
22

4o1
U2 �

#ff
1

22

4o1
V2 þ

V1

8o1

X2

i¼1
c1iðU2

i þ V2
i Þ

� 1

8o1
d12½V2ðV 2

1 � U2
1 Þ þ 2U1V1U2
;

V 0 ¼ 1

2
s1 þ

#ff
1

21

2o1

 !
U1 � #BB1 �

#gg1
21

4o1

� �
V1 þ

#ff
1

22

4o1
U2 �

#gg1
22

4o1
V2 �

U1

8o1

X2

i¼1
c1iðU2

i þ V2
i Þ

� 1

8o1
d12½U2ðU2

1 � V2
1 Þ þ 2U1V1V2
;

U 0
2 ¼ � #gg2

21

4o2
U1 �

#ff
2

21

4o2
V1 � #BB2U2 � 1

2
ð3s1 � 2s2ÞV2 þ

V2

8o2

X2

i¼1
c2iðU2

i þ V2
i Þ

þ 1

8o2
d21V1ð3U2

1 � V 2
1 Þ;

V 0
2 ¼

#ff
2

21

4o2
U1 �

#gg2
21

4o2
V1 þ 1

2
ð3s1 � 2s2ÞU2 � #BB2V2 �

U2

8o2

X2

i¼1
c2iðU2

i þ V 2
i Þ

� 1

8o2
d21U1ðU2

1 � 3V 2
1 Þ: ð48Þ

To numerically simulate the largest Lyapunov exponent of the trivial response of
equation (48), equation (44) is used again. Also, the polar co-ordinate transformation of
the linear parts of equation (48) can be seen in Appendix B.



Table 1

Internal resonance tuning parameter and the corresponding coefficients

a s2 o1 o2
#ff
1

21 #gg121
#ff
1

22 #gg122
#ff
2

21 #gg221

0�3643 �1 1�6334 4�8001 43�17f1 43�17g1 32�20f1 32�20g1 32�20f1 32�20g1
0�3160 0 1�5679 4�7037 43�71f1 43�71g1 33�46f1 33�46g1 33�46f1 33�46g1
0�2715 1 1�5042 4�6126 44�23f1 44�23g1 34�69f1 34�69g1 34�69f1 34�69g1
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5.2. NUMERICAL SIMULATION OF THE LARGEST LYAPUNOV EXPONENT

To understand well the stability of the slender beam subject to random principal
parametric resonance combined with internal resonance, a few case studies at different
movements are given in this section. In Table 1, the internal resonance turning parameter
s2 and the corresponding coefficients are listed for three values of a:

The variations of the largest Lyapunov exponent l determined by equation (48) with s2x
and s1 are shown in Figures 9(a), 9(c), and 9(e) as l� ðs1; s2xÞ surface for the case of
g ¼ 0�01 , s2 ¼ �1; 0 and 1, and #BB1 ¼ #BB2 ¼ 0�05 respectively. The corresponding isohypse
curves of l are shown in Figures 9(b), 9(d), 9(f) respectively. One can find that there is a
principal ridge in Figures 9(a), 9(c), and 9(e), respectively, which almost has the same
shape and size in the three figures, owing to the principal resonance. However, near the
principal ridge three exists a subordinate ridge, which moves from the left of the principal
one (see Figure 9(a)) to the right of it (see Figure 9(e)) when s2 increases from the negative
to the positive and perfectly covered by the principal one when s2 ¼ 0 (see Figure 9(c)),
owing to the presence of internal resonance. Also, the changes of the shape and the size of
the almost certain unstable regions for the trivial response can be determined by the zero-
isohypse curves in Figures 9(b), 9(d), and 9(f). These curves are similar to that for the
sinusoidal case [2].

Figures 10(a) and 10(b) correspond to Figures 9(a) and 9(b) respectively. All parameters
except the parametric excitation bandwidth g are kept the same: g is increased from 0�01 to
0�1. It can be seen in Figure 10(a) that the increase of the bandwidth results in a rapid
decrease of l in the area of principal resonance and the principal ridge becomes flatter.
More especially, the subordinate ridge has disappeared due to the increase of the
bandwidth. Also, the zero-isohypse curve in Figure 10(b) indicates that the almost certain
unstable region is narrower than that in Figure 9(b) and the presence of the internal
resonance influences the stability of the trivial response next to nothing. From this point of
view, it can be concluded that the increase of g is beneficial to the stability of the trivial
response of the system and can suppress the instability arising from internal resonance
effectively.

6. CONCLUSIONS

The largest Lyapunov exponent of the trivial response for a simply supported beam
under a large linear motion of basement increases rapidly when either the principal
parametric resonance or the combination parametric resonance is excited by a
narrowband random noise, which may result in the almost certain instability of the
system. Moreover, when the case of the principal parametric resonance of the first natural
mode of the system combined with 3:1 internal resonance between the first two natural
modes of it holds true, there exists not only a principal ridge but also a subordinate ridge



Figure 9. Largest Lyapunov exponent l of the trivial response of the system to principal parametric resonance
of its first natural mode combined with 3:1 internal resonance of its first two natural modes: g ¼ 0�01; #BB1 ¼ #BB2 ¼
0�05: (a, b) s2 ¼ �1; (c, d) s2 ¼ 0; (e, f) s2 ¼ 1: (a, c, e) Mesh surface of l� ðs1; s2xÞ; (b, d, f) isohypse curves of l:
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near the principal one on l� ðs1; s2xÞ surface. Numerical results show that the subordinate
ridge is closely related to the internal resonance frequency detuning parameter s2: The
wider the bandwidth of the narrowband random excitation is, the flatter the principal
ridge becomes and the more possible the disappearance of the subordinate ridge is. On the



Figure 10. Largest Lyapunov exponent l of the trivial response of the system to principal parametric
resonance of its first natural mode combined with 3:1 internal resonance of its first two natural modes: g ¼ 0�1;
#BB1 ¼ #BB2 ¼ 0�05; s2 ¼ �1: (a) Mesh surface of l� ðs1;s2xÞ; (b) isohypse curves of l:
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other hand, the isohypse curves indicate that the increase of the damping of the system can
effectively lessen the instability area of the trivial response. The validity of the almost
certain stability obtained by means of the method of multiple scales is verified by direct
numerical integration of the equation of motion of the system.
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APPENDIX A

The polar co-ordinate form of the linear parts in equation (42) transformed by using
equation (43):

r0 ¼ � r

2
ð#BB1 þ #BB2Þ þ

r

16o1o2
½ðo1

#ff
2

21 þ o2
#ff
1

22Þ fcosðx þ 2z þ yÞ � cosðx � 2z þ yÞg

þ ðo1 #gg
2
21 þ o2 #gg

1
22Þ fsinðx � 2z þ yÞ � sinðx þ 2z þ yÞg þ 8o1o2ð#BB2 � #BB1Þcosð2zÞ
;

ðA1Þ

x0 ¼ 1

8o1 cos z
½�4o1s1 cos z � #gg1

22 cosðx þ y þ zÞ þ #gg1
22 cosðx þ y � zÞ

� #ff
1

22 sinðx þ y þ zÞ þ #ff
1

22 sinðx þ y � zÞ
; ðA2Þ

y0 ¼ 1

8o2 sin z
½�4o2s1 sin z � #gg2

21 sinðx þ y þ zÞ þ #gg2
21 sinðx þ y � zÞ

� #ff
2

21 cosðx þ y þ zÞ � #ff
2

21 cosðx þ y � zÞ
; ðA3Þ

z0 ¼ sinð2zÞ
2

ð#BB1 � #BB2Þ þ
1

16o1o2
½�ðo1 #gg

2
21 þ o2 #gg

1
22Þfcosðx þ 2z þ yÞ þ cosðx � 2z þ yÞg

þ ðo1
#ff
2

21 þ o2
#ff
1

22ÞÞsinðx þ 2z þ yÞ þ sinðx � 2z þ yÞg þ 2ðo1
#ff
2

21 � o2
#ff
1

22Þsinðx þ yÞ
� 2ðo1 #gg

2
21 þ o2 #gg

1
22Þcosðx þ yÞ
: ðA4Þ

APPENDIX B

The polar co-ordinate form of the linear parts in equation (48) transformed by
equation (43):

r0 ¼ � r

2
ð#BB1 þ #BB2Þ þ

r

16o1o2
½ðo1 #gg

2
21 þ o2 #gg

1
22Þ fsinðx � 2z � yÞ � sinðx þ 2z � yÞg

þ ðo1
#ff
2

21 � o2
#ff
1

22Þ fcosðx � 2z þ yÞ � cosðx þ 2z � yÞg � o2 #gg
1
21fcosð2x � 2zÞ

þ cosð2x þ 2zÞg þ 8o1o2ð#BB2 � #BB1Þcosð2zÞ � o2
#ff
1

21fsinð2x � 2zÞ þ sinð2x þ 2zÞg

� 2o2
#ff
1

21 sinð2xÞ � 2o2 #gg
1
21 cosð2xÞ
; ðB1Þ

y0 ¼ 1

8o1 cos z
½�4o1s1 cos z þ #gg1

22 cosðx � y � zÞ � #gg1
22 cosðx � y þ zÞ

þ #ff
1

22 sinðx � y � zÞ � #ff
1

22 sinðx � y þ zÞ þ 2g1
21fsinð2x � zÞ þ sinð2x þ zÞg

� 2 #ff
1

21fcosð2x � zÞ þ cosð2x þ zÞg
; ðB2Þ
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y0 ¼ 1

8o2 sin z
½ð8s2 � 12s1Þo2 sin z � #gg2

21 sinðx � y � zÞ � #gg2
21 sinðx � y þ zÞ

� #ff
2

21 cosðx � y � zÞ � #ff
2

21 cosðx � y þ zÞ
; ðB3Þ

z0 ¼ sinð2zÞ
2

ð#BB1 � #BB2Þ þ
1

16o1o2
½�ðo1 #gg

2
21 þ o2 #gg

1
22Þfcosðx þ 2z � yÞ þ cosðx � 2z � yÞg

þ ðo1
#ff
2

21 � o2
#ff
1

22Þfsinðx þ 2z � yÞ þ sinðx � 2z � yÞg þ 2ðo1
#ff
2

21 � o2
#ff
1

22Þsinðx � yÞ

� 2ðo1 #gg
2
21 � o2 #gg

1
22Þcosðx � yÞ � o2

#ff
1

21fcosð2x þ 2zÞ � cosð2x � 2zÞg
� o2 #gg

1
21fsinð2x � 2zÞ � sinð2x þ 2zÞg
: ðB4Þ
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