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The first order approximate solutions of a set of non-liner differential equations, which is
established by using Kane’s method and governs the planar motion of beams under a large
linear motion of basement, are systematically derived via the method of multiple scales.
The non-linear dynamic behaviors of a simply supported beam subject to narrowband
random parametric excitation, in which either the principal parametric resonance of its first
mode or a combination parametric resonance of the additive type of its first two modes
with or without 3:1 internal resonance between the first two modes is taken into
consideration, are analyzed in detail. The largest Lyapunov exponent is numerically
obtained to determine the almost certain stability or instability of the trivial response of the
system and the validity of the stability is verified by direct numerical integration of the
equation of motion of the system.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Flexible structures undergoing a large linear motion and undertaking both constant and
random pulsating thrust are widely used in the fields of aviation engineering, military
engineering and so on. However, it is far from an easy task to gain an insight into the
dynamics of a flexible structure, even a slender beam, which is one of the simplest flexible
structures, owing to the complicated non-linear dynamics by nature. Recently, Feng and
Hu [1, 2] established a set of non-linear differential equations by using Kane’s method for
the planar oscillation of slender beams subject to a parametric excitation of the base
movement, with the cubic non-linearities of geometrical and inertia types taken into
consideration. In reference [2], the complicated non-linear dynamic behaviors of a slender
simply supported beam with principal parametric and 3:1 internal resonances were
systematically investigated and the corresponding parametrically excited dynamic stability
was analyzed in detail. As the parametric excitation, however, was restricted to be
deterministic, the significance of random parametric excitation, especially narrowband
random parametric excitation, has not been highlighted.

References to narrowband random excitation oscillators are few up to now. Rajan and
Davies [3] considered the random primary response of a Duffing oscillator subject to
narrowband excitation by using the method of multiple scales and stochastic averaging. At
the same time, Davies and Rajan [4] investigated the random superharmonic and
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subharmonic responses of the same oscillator stated above to narrowband excitation by
using the same two approaches. Nayfeh and Serhan [5] analyzed the stationary mean
and mean square responses and their local stability of a Duffing—Rayleigh oscillator
excited by the sum of a deterministic harmonic component and a random component
by using a second order closure method. Zhu et al. [6] numerically investigated the
stochastic jump and bifurcation of a Duffing oscillator under the external narrowband
excitation. Zhu [7] thought that the study of the random parametrically excited systems
was more important than that of random externally excited ones and was more
difficult in theory. Recently, Rong et al. [8, 9] studied the principal resonance of a
Duffing oscillator to combined deterministic and narrowband parametric excitations via
the method of multiple scales. The non-linear dynamic behaviors such as stability and
bifurcation of the steady response were systematically investigated in their studies.
However, related research objects are mainly concentrated on some classical modes
such as Duffing oscillator, and objects with engineering significance have been rarely
dealt with so far.

The aim of this paper is to reveal the non-linear dynamics of slender beams subject to
both a large linear motion and a small narrowband random excitation of basement. In
what follows, the random component is taken to be harmonic having a random amplitude
and phase. The paper is organized as follows. The non-linear dynamic equations of planar
motion are derived for the slender beams via Kane’s method in section 2. In section 3, the
method of multiple scales is used to determine the modulation of amplitude and phase of a
simply supported beam. In section 4, some non-linear dynamic behaviors of the system
without any internal resonances are discussed. The largest Lyapunov exponent of the
trivial response and its corresponding stability of the system to either the narrowband
random principal parametric resonance of the first mode or the combination random
parametric resonance of the first two modes are studied by means of qualitative analyses.
Also, in section 5, the largest Lyapunov exponent of the trivial response and its stability of
the system to the combination of principal narrowband random parametric resonance of
the first mode and the 3:1 internal resonance of the first two modes are systematically
analyzed. Finally, some conclusions are drawn in section 6.

2. EQUATIONS OF MOTION

As shown in Figure 1, a slender uniform beam B is simply supported on a rigid
basement 4, which is moving along in ry with respect to the Newtonian reference frame N
fixed on the ground. The beam is characterized by the natural length /, the area of cross-
section A, the second moment of area of cross-section /, the mass per unit length p, and
Young’s modulus E.

To describe the motion of the beam, two unit vectors a; and a, are defined in Figure 1,
where a, is parallel to the centroidal axis of the underformed beam, while a; is parallel to
the central principal axis of the cross-section of the beam. Both are fixed in the relative
reference frame R; built into the basement 4.

The kinetic description of the beam can be made through an arbitrary, infinitely short
element of the beam, which has a distance x away from point O. For the slender beam, the
motion of such an element can be fully determined by the point C, at the centroidal axis of
the beam. When the beam is deformed due to the motion of the basement and any other
disturbance, the point C, moves to point C, positioned by a vector u to describe the
relatively elastic deformation of C,.
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Figure 1. Configuration of a simply supported beam in a large linear motion.

Following references [1, 2] and neglecting the rotary inertia, transverse shear and torsion
of slender beams, one can derive the following geometric relation:

x+s=/:\/(l+u1vp)2+(u2,ﬁ)2dﬁ, (1)

where u; g and u, g are the partial derivatives of u; and u, with respect to the dummy
variable f, i.e., the distance from point C, to point O. In what follows, the deformation of
the beam is assumed to be not very large. By means of the truncated Taylor expansion
under this assumption, equation (1) can be approximated as

u =S — %/:(uzj/;)z dﬂ (2)

To simplify the partial differential equations of the beam into a set of ordinary
differential equations, the Rayleigh—Ritz method is used to approximate the variables s
and u, as follows:

n

=N dumae), wln ) =3 Bu(x)0i(0), (3)
i=1 i=1

where @; and @,; are the stretching and bending modal shapes of the beam when the
basement is not moving, g; and Q; are the corresponding modal co-ordinates, and n; and
n, are the numbers of modal co-ordinates used in the analysis.

According to references [1, 2], the axial load P and the moment of bending M of the
beam can be simplified as follows:

P=EAysy, M=Elug(1+u3,) " (4,5)

In general, the strain energy of beam U can be given by

U_/ 254, & / ﬁdx (©)

Kane’s method implies that the generalized inertial force of an infinitely short element of
the beam should be balanced by the generalized active force on the same element of the

beam, that is
! v oU
aC-—,N>dx+—,:0, 7
/0p< N 0Py, 0Py, )

where yy is either g, or Q, v§ and a§ are the inertial velocity and acceleration of the
center C respectively.

Using the orthogonality property between modal shapes @;; and @;; and the
orthogonality property between modal shapes ®,; and @,; for the undamped beam, one
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can finally obtain

n n n n
MG + Kiegie — i;i: 2D11(y 11, )0i0; — il:i: Cly Qin + Qin)
i J ! J
= —apbocosa, k=1,2,... n, (8)
M2ka + Ky Ok — zz:(alzczvo cos o) zl: zz: Cszqu/ z]: Zz: Egzj Eﬁ E/zfs)quf
o om m - " lnvj n m o
+ Z Z ZDzhlj QthQj + QthQ/ + ]z; Z: Zl: Fécyh + GZz]h)QhQin
J =1 =
= —bybgsina, k=1,2,... ,n, )

where

/ /
Mlk:/ PP P dx, K1k=/ EAo® 1 x Pk dx, 1,] /<]5,,‘151k dx,
0 0
I
alk:/ p®y dx,
0

1 ! !
Dy, = / EL210x @ P dx, Ef; = / ET210cP Pr dx, dab = / Opqsik dx,

i

! !
My = / pDo Py dx, Koy = / EI®y, o Dy o dx,  Chy = / p®iip; dx,
0 0 0

/ i !
Dlz(h,'/‘ = / p(l’)jj(f)hk dx, Eél} = / EIq)Zj,qu)Zk,xx(pli «dx, Elz(g / EI¢1j,xx¢2i,x¢2k,xx dx,
L L 0
! i
E§3 / EI(DI/ ‘qu)21 )»x(p2k X dx F21]h / EI¢2i,xx¢2k,xx¢2j,x®2h,x dx7 b2k = / p®2k dx
0 0

Gz,jh = / EI®); o P2j cx Popx Dok v dx, = / Dy p(B) P2y p(B) dp
0 0

3. FIRST ORDER APPROXIMATE SOLUTION

In what follows, the cases of a simply supported slender beam and o = 0 are taken into
consideration. Assume that the base acceleration is not very large and the stretch of the arc
length of the beam is so small that the beam can be treated as an inextensional one. To
arrive at general results and conclusions, a few dimensionless variables are introduced as
the following:

2
X t Ok
== 1=— %K== 10
n=7 7 k== (10)
where T = /pl*/EI and 7 represents a scaling factor.
In what follows, the motion of the basement is assumed to be

i)ozaO‘i‘é(l), (11)

where ag is the average acceleration and &£(¢) a narrowband random process which has the
same form as that described in references [3-5, 8-10] and is given by

E(t) = f cos w .t + g sin w,t, (12)
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where o, is the center frequency of £(7), and f and g are slowly varying stationary random
processes with zero means. Here £(¢) is chosen to be a zero-mean Gaussian narrowband
random excitation. It could be obtained by filtering a white noise through a linear filter
[3-5, 10], that is
E+ a9 =7" oW, (13)
where 7 stands for the bandwidth of the filter. The autocorrelation function of the white
noise W is given by
Ry (1) = 218¢6(7), (14)
where Sy is the spectrum constant of W and ¢ the Dirac delta function. The spectrum of &
is given by
70780
(02 — 0?)? + 7202

— nSpé(w.), 7—0. (15)

Substituting equation (12) into equation (13) and performing deterministic and stochastic
averaging of the equations describing the modulations of /" and g, one obtains

= (/2" P W= (/2f, G=0/2)"* W, — (7/2)g. (16)

The white noise components W, and W, are independent and their autocorrelation
functions are given by equation (14) and have the following forms:

Ri(1) = Ry(7) = nSoe /2, (17)

The correlation time of f and ¢ is O(1/y). This means that for sufficiently small
bandwidth, f and g are slowly varying functions of time.
Substituting equations (10)—(12) into equation (9) yields

ny ny ny

G + (@) — db, 9k—2a21 sz ¥ cos wt 4 gk sin wr)9; +aZZZo¢U,1999/1

i=1 j=1 h=
l#k

ny ny ny

ey D> Bt +98) =0, k=12, m, (18)

i=1 j=1 h=1
where
=Ko/ My, o =o.T/n? d =ayT?ds5;/In* Moy, f¥ =T, /eln* My,
~k ~ ~
gh; = gT?as, /eln My, kh = OC,];I/FMzk, By = Bin/eMo,  Cop = CoT/npl,
~ 1

K2k - 1/717 fo @%k Jm d’h 1]/1 = i f() ¢z/d)l1k d’77 ¢l} f(? szfﬁdjz//)’ dﬁ My = f() QD%k d11,
a21 fo i dn, zjh = ’1 /m*) fo Doy P2y (P Pak + Pong Posey) dn,  0<e<1.

Decoupling equation (18) through the use of linear transformation § = @y, where 3 =
{91979, 3 y={yy2-- -y}, and & = {p,0 - -- ®,,} is the normalized mode matrix

of linearized equation (18), and introducing the viscous modal damping to characterize the
energy dissipation, one has

.. P n Ak N n .
Fie + 268kTy + Oy — & ZAZ (frcosor+ g5 sinwn)y +ed 7 ST N dy v
+82i IZ th 1 ljh yjyl1+y/y/1)*0 kilvza"'vl/lz) (19)
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where fz, Z il Qf’p/cfzmolm @21 222:1 PO (/’pkgleh(!’hia Ozf‘(/h = ZZZ:I 121 D ome
Zinzz:l @pkap nP1iPmiPnh> dnd ﬁljh - Z 'lzl Z;;:l n:l (Ppkﬁ1;;1111(Pli(Pm/(pnh'

The first two sets of coefficients stated above give the amplitudes of narrowband
random parametric excitation and the last two sets the non-linear interaction coefficients
between the modal co-ordinates.

The method of multiple scales has been widely used in the analysis of deterministic
systems. However, Rajan and Davies [3], Davies and Rajan [4], Nayfeh and Serhan [5],
and Rong et al. [8, 9] extend this method to the analysis of non-linear systems subject to
random external or parametric excitations. Here, now, this method is also used to derive
the first order approximate solutions of equation (19) as the following:

Vi(t,8) = yro(To, T1) + &yii (To, Th), (20)

where Ty =1, Ty =¢t, and k= 1,2,... ny. Substituting the solution candidates into
equation (19) and equation the coefficients of some powers of ¢, one obtains

D(%yko_‘_wiyk():oa k:1727"'an2a (213)

Doy + oy = =28 Doyro — 2DoDiyro + Z f 2 COS 0T + §h; sin @)y

—Z Z lzh | ljhyzOy/OyhO Z Z : i Uhylo(DoyIODOyhO +y0D50),

k=1,2,... n, (21b)

where Dy = 9/0T, and D; = 9/0T) are the partial differential operators.
The solution of linear partial differential equation (21a) can be written in the complex
form

Yko :Ak(Tl)eXp(iwkTO) +C'C'7 k= 1727"'7’125 (22)

where c.c. stands for the complex conjugate of the preceding terms. Substituting equation
(22) into equation (21b) yields

Diyi + ofyi = — 2iwk<ékAk + A}) exp(iowg 1))

2 Zm f2m - iglz(m) {4 expli(w + wn)t] + Ay expli(w — o)1)}

m=1
2 ny ~k ~k 2 ~k
+ Zm:] Zj:l h=1 {(_amjh + @ja)hﬁﬂljh + whﬁmjh)
A AjAp expli(wy, + w; + o)1)

N Ak ~k - .
_“ﬁljh - ijhﬁmjh + wzﬂny‘h)AmAjAh expli(w, — w;j + @;,)1]

Lk sk ko5 S .
_aénjh - ijhﬁmjh + w/%ﬂmjh)AmAjAh exp[l(—wm — i+ (l)h)‘[]}

+(
. sk ko= .
+ (_aﬁqjh + ij/’lﬁmjh + w/%ﬁmjh)AmAjAh eXp[l(—wm + Wy + (l)h)f]
+(
cc., k=12,...,m, (23)

+

where the overbar stands for the complex conjugate.

A particular solution of equation (23) may contain some secular terms and small-divisor
terms because of the presence of principal parametrical resonance or combination
parametric resonance or internal resonance between the natural modes. In what follows,
only two natural modes are taken into consideration to investigate the behaviors of
random parametric resonances.
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4. RANDOM PRINCIPAL AND COMBINATION PARAMETRIC RESONANCES
WITHOUT ANY INTERNAL RESONANCES

Assume that there exist no internal resonances between any two natural modes. In order
to investigate the random combination parametric resonance between the mth and the nth
natural modes, the frequency detuning parameter o is introduced as given below:

W=, +ow,+eo, mn=12 ... m. (24)

Substituting this equation into equation (23) and eliminating the terms that produce
secular terms in yj;, one obtains

2 (G + AL) = X(fp — i6) Ay exp(io) Ty) + Z CmjAiA; Ay =0,

2iw, (8, 4n + A)) — (/J;m 1g2m)A exp(io) T1) + Zm cnid; A A, =0,

Qi (G i+ Ap) + D7 i didiAde =0, k#m,n, (25)
where

A~k 2 Pl .
o 3k — 204 B Jj=k,
= 25k 25k :
Z(akﬂ + oc + ak] i B — a)kﬁjjk), Jj#k.

As the modes for k#m,n are neither directly excited by the external excitation, nor
indirectly excited by the internal resonance, only the mth and the nth natural modes
contribute to the steady state response due to the presence of viscous damping. Finally,
one has

2icom Endm + A) = 3(Foy — igg;)A exp(io1 T1) + comAnAn Ay + Com A% A = 0,
2iw, (8, 4n + A)) — 2(me 1g2m) mexp(iogTh) + c,mA Ay + CamAmAnA, = 0. (26)

Similarly, to describe the closeness of the beam to the random principal parametric
resonance of the mth natural mode, the frequency detuning parameter o; is also
introduced as given below:

w=2w,+eo;, m=12 ... m. (27)

Substituting the above equation into equation (23) and eliminating the terms that produce
secular terms in yi|, one finally has

210 EAm + A) = 3(Fop — 105 ) A exp(i61 T1) + CpmA% Ay = 0. (28)

In what follows, without loss of generality, only the first two natural modes are involved
to investigate the random parametric resonances.

4.1. RANDOM PRINCIPAL PARAMETRIC RESONANCE OF THE FIRST NATURAL MODE

4.1.1. Modulation equations and the largest Lyapunov exponent

Following equation (28), the condition of random principal parametric resonance of the
first natural mode holds true when m =1, that is ® = 2w; + ¢o;. Consequently,
one has

s Al - ) -
iw1 (641 + A)) — X f5, —195)) Ay exp(io Ty) —i—%c“A%Al =0. (29)
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Substituting the Cartersian transformation

A(Ty) = YU (Ty) — iV (T)] e, :%Tl (30)

into equation (29) and separating the results into real and imaginary parts, one arrives at a
set of ordinary differential equations, namely, the modulation equations of steady state
response

2 921 f21 1 2 2
U =|(- U+ |—+=—=—|Vi+— U Vo)V,
1 ( ¢ — 4(u> 1+ ( 2+4 1) 1+8w1611( T+ V)V

/ f21 921 1 2 (3D
V= 2 4 Ui + ( +4—>V1—8—1C11(U1+V)U

In what follows, the analysis is mainly focused on the stability of the trivial response of
equation (31). To obtain the necessary and sufficient almost certain stability condition of
equation (31), according to reference [9], one has the linearized part of the equation in the
neighborhood of (0, 0):

~l N

o1 fo 2 91
Vi ==+ | U &+ == | V. 32
! <2+4w1> 1+( 1 4a)1> ! (32)

For ergodic random processes f and g, according to Oseledec multiplicative ergodic
theory, it can be concluded that for any initial value (U, V), the Lyapunov exponent of
the phase portraits (U, (T, Uyg, Vio), Vi(T1, U, V10)) in equation (32) can be described as

. 1
(U, Vi) = hmrmoofln[(Ul(Tl, Uio, V10))* + (Vi(T1, Uso, V10))]'2. (33)

From equation (33), one can obtain two different Lyapunov exponents. Thus, the
almost stability of the trivial response of equation (31) can be determined by the largest
Lyapunov exponent 4 = Ay, i.€., when A <0, the trivial solution is almost certainly stable
and is unstable when 4 > 0.

Alternatively, by using the following polar co-ordinate transformation

U = rcosﬂ V= rsing7 (34)

27
one can transform equation (32) to

r .
=—qr T o (le sin 1 — g3 cos 1),
N = o + (le COS 1 + §iyy sinn). (35)

By letting p = Inr and substituting it into equation (35), one obtains

p=—S+—— (le sinn — g21 cos 1),

)

1
n'=a + 30 (le cosn + g3, sin ). (36)
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Finally, one can evaluate the largest Lyapunov exponent by using another calculating
form, that is

. T 1T . .
A==¢ +—Ilimz, _ —/ [ (T) sinn(Ty) — g4, (Ty) cos n(T1)] d Ty (37)
4(01 T 0
Obviously, equation (37) shows that the largest Lyapunov exponent is inversely
proportional to the modal damping coefficient ¢;, i.e., the higher is the value of ¢;, the
smaller is the value of /.

4.1.2. Numerical simulation of the largest Lyapunov exponent

To understand the non-linear dynamics of slender beams subject to the combination of
a large deterministic linear motion and a small narrowband random excitation, a few case
studies at different basement movements will be given in this and the following sections.
For this purpose, the dimensionless average acceleration a = —agT?/(n*l) and the
dimensionless narrow band random process &; = ¢T2/(n*l) are introduced and the
corresponding dimensionless slowly varying stationary random processes become fi; =
fT?/n*l and g; = gT?/n*l, respectively, while the parameters ¢ and 4 are fixed to 0-1 and
0-01 respectively. In Figure 2, the first order natural frequency, the second order natural
frequency and the tripled first order natural frequency are shown as the functions in a.
This figure enables one to perfectly tune a 3:1 internal resonance of the beam when
a = 0-3160.

Following references [3, 4, 8-10], for numerical simulation it is more convenient to use a
pseudo-random signal given by

202
&) = %Z:Zlcos(wkt—i—(pk). (38)

The frequencies wy are chosen independently from a random population with probability
density function of the same form as the spectrum of &;, and the random phases ¢,
are independent and uniformly distributed in (0,27). Shinozuka [11] has verified that
£1() tends to a Gaussian process as N — oco. For the very narrowband simulations used
here, the spectrum chosen is a simple top-hat type, and the random frequencies are
distributed uniformly in (o — y/2,® + y/2). According to reference [9], f; and g, can be

0-0 01 02 03 04 05 06

Figure 2. Variation of the first order natural frequency ;, the second order natural frequency w, and the
tripled first order natural frequency 3w, with the dimensionless average acceleration a.
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written as

X 20’2 N Y
fi(T) = Wizk:l COS(;Qle +(Pk)7

202 <N . Y
gl(Tl) = WCZk:l Sll’l(g Qle + (/)k)7 (39)

where Q) are independent and uniformly distributed in (—0-5, 0-5) and N is chosen
as 500.

In the numerical simulation of this and the next section, a is fixed at 0-0912 and the
corresponding parameters become w; = 12000, w, = 4-2179, f21 =49-34f1, and Qél =
49-34¢, respectively. The time history of f; is shown in Figure 3. The variation of the
largest Lyapunov exponent A determined by equation (37) is shown in Figure 4(a) as
A— (al,ag) surface for the case of y = 0-01 and ¢; = 0-1. The corresponding isohypse
curves of A, which indirectly indicate the different almost certain stability boundaries of
the trivial response for different damping parameters, are also shown in Figure 4(b). In
other words, according to equation (37), for instance, the almost certain stability
boundary is the isohypse curve of A =0-1 when ¢; = 0-2, the isohypse curve of 1 =0-2
when ¢ = 0-3 and so on. When the value on the 2 — (a7, aé) surface is greater than zero, the
corresponding trivial response is unstable; on the contrary, the response is stable. With the
increase of y from a small value, the stability of the trivial response of the system will
change more or less. Figures 5(a) and 5(b) correspond to Figures 4(a) and 4(b)
respectively. All parameters except the bandwidth of the narrow-band random excitation
are kept the same: y is increased from 0-01 to 0-1. It can be seen in Figure 5(a) that the
mesh surface becomes flatter than that in Figure 4(a), which implies that the unstable areas
will become narrower with the increase of y and the isohypse curves in Figures 5(b) mainly
verify the validity of this conclusion.

Without loss of generality, in order to verify the validity of the stability of the trivial
response as well as the effectiveness of the damping described by equation (37), direct
numerical integration of the linear parts of equation (19) has been made under three
exciting conditions for its first mode when y = 0-01, i.e., (og7 a1) is taken to be (0-0002, 0),
(0-0004, 0), or (0-0008, 0) respectively. Since the higher modes (k >2) are neither directly

3 3

2 2

1 1

0 o
A <

1 -1

2 2

3 T T T T -3 4 T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000

(a) T, (b) T

Figure 3. Time history of f; with ag =1:(a) y=0-01; (b) y=0-1.
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(b) o4

Figure 4. Largest Lyapunov exponent A of the trivial response of the system to principal parametric resonance
of its first mode: y = 0-01, ; = 0-1. (a) Mesh surface of 1 — (al,ag); (b) isohypse curves of 1.

s L n n L Lo fl L L
-1 -08 -06 -04 -02 0 02 04 06 08 1

(b) o,

(a)

Figure 5. Largest Lyapunov exponent 4 of the trivial response of the system to principal parametric resonance
of its first mode: y = 0-1, {; = 0-1. (a) Mesh surface of 1 — (o-ha%); (b) isohypse curves of 1.

excited by parametric excitation nor indirectly excited by internal excitation, from the
linear parts of equation (19) it can be shown that the response amplitude of these modes
die out due to the presence of damping, and the response of the first mode can be solved
independently. According to Figure 4(b), one can find that the exciting position of
(02,01) = (0-0002,0) in the 0%—01 plane is between the isohypse curve 4 =0 and the
isohypse curve 4 = 0-1, position of (d2,01) = (0-0004,0) between 4= 0-1 and 0-2, and
position of (62, 51) = (0-0008,0) between 2 = 0-2 and 0-3 respectively.

Figures 6(a)—(f) show the corresponding numerical integration results for the three
exciting conditions stated above with different dumping parameters, where the initial
integrating condition is chosen to be (yi9,7,) = (0,10). According to Figure 4(b),
conditions in Figures 6(a), 6(c), and 6(e) will make the trivial response unstable and
conditions in Figures 6(b), 6(d), and 6(f) will make it stable. Finally, one can find that the
results in Figure 4(b) are in full agreement with that in Figure 6.
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Figure 6. Numerical integration results for different exciting conditions: (a) (¢%,51) = (0-0002,0), &; = 0-1;
(®) (62,61) = (00002,0), & =02 (c) (o2,01) = (0:0004,0), & =02 (d) (o201) = (0:0004,0), & =03;
(© (02,01) = (0:0008,0), & = 0-3; (1) (c2, 1) = (0:0008,0), &, = 04. '

4.2. COMBINATION RESONANCE OF THE FIRST TWO NATURAL MODES

4.2.1. Modulation equations and the largest Lyapunov exponent

Following equation (25), the condition of combination resonance between the first two
natural modes holds true when m =1 and n =2, i.e., ® = w; + w; + ¢a;. Consequently,
one obtains

. “ Al v A - . - -
21w1(g1A1 + All) — %(fZZ — lgéz)Az exp(lal Tl) + c1pArA> A1 + CllA%Al =0,
. " ~2 CA - . - -
21(,02(@2142 + A/Z) — %(fzz — lggz)Al eXp(llel) + CQQA%Az + 1 A1 A1 A7 = 0. (40)
Similarly, substituting the Cartesian transformation

. : o
A(Ty) = U(T) = iVi(Ty)] ™, 2 :71T17 k=12 (41)
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into equation (40) and separating the results into real and imaginary parts, one arrives at a
set of ordinary differential equations, namely, the modulation equations of steady state
response:

_ 2 1 gzz fzz 2 2 2
U{——Q1U1—501V1 U + —= V +@Zk:l Clk(Uk+Vk),

4 4m)
V/zlmU]—CAzV]-ﬁ-fiUz—ngzV——Z cix( U2+V)
! 2 4(1)1 4w 1 8(()1 k=1 k
U, =— gle +f21 Vi—3&U, — 01V2+ Z e (UE+ V3,
2 4w > k=1 k k
/ f21 921 UZ 2 2
V, = do 2U —|-4 Vi +2O'1 U, — &V, — Zk 1C2k U + Vi ) (42)

Substituting the following polar co-ordinate transformation [12]
U =rcosxcosz, Vi=-—-rsinxcosz, U, =rcosysinz, V,=—rsinysinz (43)

into the linear parts of equation (42), one can obtain a set of equations similar to equation
(36) (see Appendix A), where r stands for the amplitude of the response of the system, x
and y are the polar angles of the two sub-systems, respectively, and z is the coupling angle
between the two sub-systems. However, it will result in failure for one to numerically
simulate the largest Lyapunov exponent of the trivial response of the system owing to z
crossing nn/2 (n = 0,+1,£2,...). In what follows, therefore, one method for calculating
the largest Lyapunov exponent of the trivial response of equation (42) is adopted [13],
namely,

1 K R
ARy KT, (44)

where T is generally chosen to be 10-fold the longest period of the linear system in
question, K a larger number to ensure the stability of the numerically simulating results,
Ww(kT) the solution vector at ¢t = kT, which is calculated with an initial condition of
normalized w(kT — T') and within an integrating period of [(k — 1)T,kT], and ||w(kT)||
the modulus Ww(kT).

In order to justify equation (44), the largest Lyapunov exponent A and the
corresponding isohypse curves of A, which are determined by equation (44), are shown
in Figures 7(a) and 7(b) with the same conditions as that in Figure 4, where 7" = 90 and
K = 30. Comparison has been made between Figures 4 and 7 and the results show that
they are almost the same.

4.2.2. Numerical simulation of the largest Lyapunov exponent

In the following simulation of the largest Lyapunov exponent of the trivial response,
sinceA? is ﬁ}zed at 0-0912, all other parameters are kept the same as that in the last section
but f,, = f5, = 44-46f; and g3, = §5, = 44-46g; should be added owing to the need of
combination resonance analysis. After investigating and calculating the trivial response of
equation (42), the parameters in equation (44) are finally chosen as follows: 7' = 100,
K = 30. The variation of the largest Lyapunov exponent /4 determined by equation (44)
with aé and ¢, is shown in Figure 8(a) as A — (ol,aé) surface for the case of y = 0-1 and
¢1 =¢, =0-1. The corresponding isohypse curves of A are shown in Figure 8(b).



746 Z. H. FENG AND H. Y. HU

08 -06 -04 -02 0 02 04 06 08 1

@ - ® oy

Figure 7. Largest Lyapunov exponent A of the trivial response of the system to principal parametric resonance
of its first mode calculated by equation (44): y = 0-01, ¢; = 0-1. (a) Mesh surface of 1 — (cl,ag); (b) isohypse
curves of /.
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Figure 8. Largest Lyapunov exponent A of the trivial response of the system to combination parametric
resonance of its first two natural modes: y = 0-1, {; = ¢, = 0-1. (a) Mesh surface of 1 — (al,ag); (b) isohypse
curves of 1. )

Figures 8(a) and 8(b) correspond to Figures 5(a) and 5(b), respectively, and they have a
similar contour, but the former will receive a stronger excitation than the latter for the
same unstable area. In other words, the unstable area under the condition of combination
parametric resonance of the first two natural modes will be narrower than that of the
principal parametric resonance of the first mode if all parameters are kept the same.

5. RANDOM PARAMETRIC EXCITATION COMBINED WITH 3:1 INTERNAL
RESONANCE BETWEEN THE FIRST TWO NATURAL MODES

As stated above, when a comes close to 0-3160, the condition of 3:1 internal resonance
between the first two natural modes will hold true which results in that the two modes will
be excited together no matter which is parametrically excited. Without loss of generality,
in what follows, the principal parametric resonance of the first natural mode is
investigated.
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5.1. MODULATION EQUATIONS AND THE LARGEST LYAPUNOV EXPONENT

To describe the closeness of the beam to these two types of resonances, two detuning
parameters are introduced as given below:

w=2w +¢e0y, W, =23w + ¢eon. (45)
Substituting these into equation (21b) yields
Doy (G141 + A1) = 3(F3 —ig%) A1 explior Th) + (f, — igh)] 42 exp{i(2 — 1)1}
+ 3 eydididy + diy A2 A, exp(ioyTy) = 0,
2iwy (G4 + AY) — %(f; —ig3,) A exp{i(o1 — 02) T1} + 27:1 cojAjA; Ay
+ d21 45 exp(—ior T1) = 0, (46)
where  dip = 5‘%21 iy Gy — 20’%[2;11 + wlwz(ﬁizl + Bilz) - (W%Bizl + w%BiIZ) and

dy = O‘111 260113111
Similar to equation (40), substituting the Cartesian transformation
. 3 g
A(Ty) = YU(T) = iVi(T))] €%, k=1,2 1 :?lTla d= (o1 —a2)T1 (47)

into equation (46) and separating the results into real and imaginary parts, one finally has

Al
g21 1 f21 g22 f22 2 ) )
U= g At ] K Rl L Uy —5Va +o— (U2 + 7

(gl +4 1) ! 2(01 261)1) b 4w W1 40)] +8(JJ Z;’:1 Cl( i + 1)

—8—d12[V2( U2)+2U1 V1U2]

f2 . 9 f 9 Ui
V' == 1 U, — _ 921 v 22 U, — 22 2 2
2( T 2 U T T 40) T h0 P T 40, R, oy it U+ V)

——dlz[Uz( — VH) 20V V),

8w
A %
r_— 92 gy /21 _A _1 2 2 2
U, = 4(1)2U1 4602V1 U, 2(361 202)V2+8 ZI, 1(,’zl(U +V)
1
—— dy V(30U = V?
+8w2 01 V1 (3U; i)
le

U, 2
V2 g21 Vi + (30’1 — 20’2)U2 —-é& _—ZZizl Cz,‘(Ul»z + Vlz)

4(02 1 4w {00
- 2 2
8w2d21 U (U = 313). (48)

8

To numerically simulate the largest Lyapunov exponent of the trivial response of
equation (48), equation (44) is used again. Also, the polar co-ordinate transformation of
the linear parts of equation (48) can be seen in Appendix B.
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TABLE 1

Internal resonance tuning parameter and the corresponding coefficients

Al . Al n 2 o
a 02 w1 w2 fa gél S g%z S g%l
0-3643 -1 1-6334 48001  43-17/1 43-17g; 32-20f 32-20¢, 32201} 32-20¢,
0-3160 0 15679 47037  43.71f 43.71¢, 3346/, 33469, 3346/ 33.46¢,
0-2715 1 1-5042 46126  44-23f 44.23g, 34-69f1 34-69¢g, 34-6911 34-69¢,

5.2. NUMERICAL SIMULATION OF THE LARGEST LYAPUNOV EXPONENT

To understand well the stability of the slender beam subject to random principal
parametric resonance combined with internal resonance, a few case studies at different
movements are given in this section. In Table 1, the internal resonance turning parameter
o, and the corresponding coefficients are listed for three values of a.

The variations of the largest Lyapunov exponent 4 determined by equation (48) with ¢?
and ¢; are shown in Figures 9(a), 9(c), and 9(e) as A — (ol,aé) surface for the case of
=001, 0, =—1,0and 1, and ¢; = ¢ = 0-05 respectively. The corresponding isohypse
curves of A are shown in Figures 9(b), 9(d), 9(f) respectively. One can find that there is a
principal ridge in Figures 9(a), 9(c), and 9(e), respectively, which almost has the same
shape and size in the three figures, owing to the principal resonance. However, near the
principal ridge three exists a subordinate ridge, which moves from the left of the principal
one (see Figure 9(a)) to the right of it (see Figure 9(e)) when o, increases from the negative
to the positive and perfectly covered by the principal one when g, = 0 (see Figure 9(c)),
owing to the presence of internal resonance. Also, the changes of the shape and the size of
the almost certain unstable regions for the trivial response can be determined by the zero-
isohypse curves in Figures 9(b), 9(d), and 9(f). These curves are similar to that for the
sinusoidal case [2].

Figures 10(a) and 10(b) correspond to Figures 9(a) and 9(b) respectively. All parameters
except the parametric excitation bandwidth y are kept the same: y is increased from 0-01 to
0-1. It can be seen in Figure 10(a) that the increase of the bandwidth results in a rapid
decrease of A in the area of principal resonance and the principal ridge becomes flatter.
More especially, the subordinate ridge has disappeared due to the increase of the
bandwidth. Also, the zero-isohypse curve in Figure 10(b) indicates that the almost certain
unstable region is narrower than that in Figure 9(b) and the presence of the internal
resonance influences the stability of the trivial response next to nothing. From this point of
view, it can be concluded that the increase of y is beneficial to the stability of the trivial
response of the system and can suppress the instability arising from internal resonance
effectively.

6. CONCLUSIONS

The largest Lyapunov exponent of the trivial response for a simply supported beam
under a large linear motion of basement increases rapidly when either the principal
parametric resonance or the combination parametric resonance is excited by a
narrowband random noise, which may result in the almost certain instability of the
system. Moreover, when the case of the principal parametric resonance of the first natural
mode of the system combined with 3:1 internal resonance between the first two natural
modes of it holds true, there exists not only a principal ridge but also a subordinate ridge
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Figure 9. Largest Lyapunov exponent A of the trivial response of the system to principal parametric resonance
of its first natural mode combined with 3:1 internal resonance of its first two natural modes: y = 0-01, ¢, =¢, =
0-05. (a, b) 02 = —1; (¢, d) o2 = 0; (e, ) 02 = 1. (a, c, €) Mesh surface of 1 — (a1, aé); (b, d, ) isohypse curves of 1.

near the principal one on /. — (o, a?) surface. Numerical results show that the subordinate
ridge is closely related to the internal resonance frequency detuning parameter g,. The
wider the bandwidth of the narrowband random excitation is, the flatter the principal
ridge becomes and the more possible the disappearance of the subordinate ridge is. On the
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Figure 10. Largest Lyapunov exponent A of the trivial response of the system to principal parametric

resonance of its first natural mode combined with 3:1 internal resonance of its first two natural modes: y = 0-1,
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other hand, the isohypse curves indicate that the increase of the damping of the system can
effectively lessen the instability area of the trivial response. The validity of the almost
certain stability obtained by means of the method of multiple scales is verified by direct
numerical integration of the equation of motion of the system.
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APPENDIX A

The polar co-ordinate form of the linear parts in equation (42) transformed by using
equation (43):

!
o 2 16(01(1)2

+ (wlg; + wzgéz) {sin(x — 2z + y) —sin(x + 2z 4+ p)} + 8w w2(; — &p)cos(2z)],

r (@121 +02.73) {eos(x +2z +y) — cos(x — 2z + )}

(61 +é)+

(A1)
X :;[—4(» 01 C0s Z — by cos(x + y 4 z) + gh, cos(x + y — 2)
8w cos z e 2 2
Al A
—fosin(x+y+z)+fysin(x+y—z)], (A2)
d :¥[—4a)20 sinz — g3, sin(x + y + z) 4 43, sin(x + y — z)
8w, sin z ! 21 21
2 ")
—farcos(x+y+z)—fycos(x+y—z), (A3)
, sin(2z),. ) Al
Z = (€1 = S2) + [~ (01§35 + ®295,){cos(x + 2z + y) + cos(x — 2z + y)}
2 16&)1602
) AL : 2 Al
+ (01f 5 + 0af ))sin(x + 2z + ) +sin(x — 2z + y)} + 2(o1f 5 — waf p)sin(x + y)
— 2(w1§3) + ©2§3,)c08(x + y)]. (Ad)
APPENDIX B

The polar co-ordinate form of the linear parts in equation (48) transformed by
equation (43):

o !

2
") o
+ (w1 f5 — (uzféz) {cos(x = 2z+y) —cos(x+2z—y)} — wzgil{cos@x —2z)

r (¢ +&)+ [(wlgﬁl + wzééz) {sin(x — 2z — y) —sin(x + 2z — y)}

16601(1)2

+cos(2x 4 22)} + 8wywa (& — &)cos(2z) — wzfél {sin(2x — 2z) + sin(2x + 2z)}
2w, f, sin(2x) — 2w, cos(2x)], (B1)

1
" 8w, cosz

! [—4wia1 cos z + by cos(x — y — z) — Gy cos(x — p + z)

+f;2 sin(x —y —z) —f;z sin(x — y + 2) + 2¢} {sin(2x — z) + sin(2x + 2)}
— 2}%1 {cos(2x — z) + cos(2x + 2) }], (B2)
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1 . . .
! :m[(gaz — 120’1)602 sSin z — g%] Sln(x -y — Z) — g%] Sln(x -y + Z)
A2 A2
—facos(x —y—z) = fy cos(x —y+z)], (B3)
sin(2z) . . N N
2 )b L (gl + wagl){eos(x + 2 — ) + cos(x — 22 - 7))
2 16601(02

+ (@1f ) — o p){sin(x + 22 = ) + sin(x = 22 )} + 2Ao1fy — waf p)sin(x —)
— 2(193; — 2ghy)cos(x — ) — wzfél {cos(2x + 2z) — cos(2x — 2z)}
— wy gy {sin(2x — 2z) — sin(2x + 22)}]. (B4)
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